JONATHAN SCHWARTZ

209 Beakes St., Ann Arbor, Michigan 48104

Education

University of Michigan, Ann Arbor

Ph.D. Material Science and Engineering

- Thesis: Recovering Material Chemistry and 3D Structure at near Atomic Resolution
- Awards: DOE SCGSR Fellow, Rackham Merit Fellowship, Microscopy and Microanalysis 2019 Scholar, Eagle Scout, Discretionary Director's (DD) Allocation for Summit, ThetaGPU and Polaris Supercomputers, Molecular Foundry User

Arizona State University

Bachelor of Science, Chemical Engineering

Publications

- 1. J. Schwartz, Z.W. Di Y. Jiang, A. Fielitz, D.H. Ha, S. Perera, I. Baggari, et. al. "Imaging Atomic-Scale Chemistry from Fused Multi-Modal Electron Microscopy" npj Computational Materials 8, 16 (2022).
- 2. J. Schwartz, C. Harris, J. Pietryga, H. Zheng, P. Kumar, A. Visheratina, N. Kotov, et. al. "Real-Time 3D Analysis During Electron Tomography using tomviz" Nature Communications 13, 4458 (2022).
- 3. M. Cao, J. Schwartz, H. Zheng, Y. Jiang, R. Hovden, Y. Han "Atomic Defect Identication with Sparse Sampling and Deep Learning" Communications in Computer and Information Science 1512 (2022).
- 4. J. Schwartz, H. Zheng, M. Hanwell, Y. Jiang, R. Hovden, "Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction" Ultramicroscopy 219 (2020) 113122.
- 5. J. Schwartz, Y. Jiang, Y. Wang, A. Aiello, P. Bhattacharya, H. Yuan, et. al, "Removing Stripes, Scratches, and Curtaining with Non-Recoverable Compressed Sensing," Microsc. and Microanal. 25 (2019) 705-710.

Research Experience

University of Michigan

Graduate Research Assistant, Electron Microscopist

- Designed an image processing algorithm (written in Python and C++) that improves signal-to-noise over 500% by correlating simultaneously acquired multi-modal chemical signals collected inside the electron microscope.
- Deployed quantum mechanical electron scattering simulations (producing > 7 TB of data) on GPU-accelerated Supercomputers at Oak Ridge National Lab to validate dose-requirements for atomic-resolution tomography algorithms.
- Developed efficient multi-threaded tomography algorithms with OpenMP/MPI, CUDA, and C++ wrapped in a Python interface to achieve over a 10x performance speed-up, enabling the real-time 3D analysis of volumetric data.
- Automated tomography experiments on electron microscopes with an easy-to-use GUI for user intervention.

Arizona State University

Undergraduate Research Assistant

- Built field-effect transistors with MoS₂ 2D flakes to measure electrical property enhancements due to chemical doping.
- Fabricated 2D materials (e.g. graphene) with chemical vapor deposition and characterized with Raman Spectroscopy.

Harvard University

Center for Nanoscale Systems Researcher

• Designed and constructed micro-heating devices with AutoCAD and nano-fabrication techniques (e.g. lithography).

Projects

Semantic Segmentation of Materials at Atomic Resolution with 3D Deep Learning | PyTorch Summer 2022

• Trained 3D U-Net convolutional neural network architectures for the segmentation and identification of atom coordinates from experimental and synthetic atomic-resolution 3D tomographic models achieving 85% accuracy on the test dataset.

Classifying Crystal Symmetry with Distributed Deep Learning | Keras, Horovod

• Trained popular convolutional network architectures (e.g. ResNet51) with $> 10^6$ simulated diffraction images on a HPC-system using multi-GPU and multi-node data parallelism. Obtained 55% classification accuracy on the test dataset.

Tools/Skills

Software: Python, MATLAB, C/C++, CUDA, OpenMP/MPI, LaTeX, GitHub, Bash, Julia

Experimental: Microscopes: SEM, TEM, S/TEM, EDX, EELS, Raman, Clean-room: PVD, CVD, Lithography

September 2017 – April 2023 Ann Arbor, MI

Tempe. AZ

Tempe, AZ

January 2016 – May 2017

Summer 2016

Cambridge, MA

August 2017 – Present

Ann Arbor, MI

September 2013 – May 2017

Relevant Coursework

- Deep Learning for Computer VisionOptimization Methods for ML
- Machine Learning (ML)Computational Data Science
- Quantum Mechanics
- Condensed Matter Physics

Publications (Continued)

- N. Kotov, P. Kumar, T. Vo, M. Cha, A. Visheratina, J.K. Kim, W. Xu, <u>J. Schwartz</u>, et. al. "Photonically Active Bowtie Nanoassemblies with Chirality Continuum" Nature (Accepted).
- W. Liu, X. Guo, <u>J. Schwartz</u>, et. al., "A three-stage magnetic phase transition revelead in ultrahigh-quality van der Waals magnet CrSBr" ACS Nano 16, 15917 - 15926 (2022).
- I. Navid, A. Pandey, Y.M. Goh, <u>J. Schwartz</u>, R. Hovden, Z. Mi, "GaN-based Deep-nano structures: Break the Efficiency Bottleneck of Conventional Nanoscale Optoelectronics" *Adv. Optical Mater.* 2102263 (2022).
- P. Wang, D. Wang, Y. Bi, B. Wang, <u>J. Schwartz</u>, R. Hovden, Z. Mi, "Quaternary Alloy ScAlGaN: A Promising Strategy to Improve the Quality of ScAlN" Appl. Phys. Lett. **120**, 012104 (2022).
- Y.M. Goh, <u>J. Schwartz</u>, T. Ma, B. Kerns, R. Hovden, "Contaminaition of TEM Holders Quantified and Mitigated with the Open-Hardware, High-Vacuum Bakeout System" *Microsc. and Microanal.* 26 (2020) 906-912.
- Y. Wang, Y. Wu, <u>J. Schwartz</u>, et. al. "A Single Junction Cathodic Approach for Stable Unassisted Solar Water Splitting" Joule 3 (2019) 1-13.
- Y. Wang J. Schwartz, et. al. "Stable Unassisted Solar Water Splitting on Semiconductor Photocathodes Protected by Multi-Functional GaN Nanostructures" ACS Energy Lett. 4 (2019) 1541-1548.

Contributed Presentations

- 1. J. Schwartz, et. al. "Recovering Atomic-Scale Chemistry from Fused Multi-Modal Electron Microscopy", Microscopy and Microanalysis Meeting (Online) and Materials Research Society Fall Meeting (Boston, MA 2021).
- J. Schwartz, et. al. "Real-Time 3D Analysis During Electron Tomography using tomviz", Microscopy and Microanalysis Meeting (Invited - Portland, OR 2022) and Materials Research Society Fall Meeting (Boston, MA) (2021).
- 3. J. Schwartz, "Optimization Frameworks for Recovering Chemistry and 3D Atomic Structure with Electron Microscopy", X-Ray Science Division at Advanced Photon Source, Argonne National Laboratory (Invited Talk) (2021).
- J. Schwartz, et. al. "Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction", Microscopy and Microanalysis Meeting, Online (2020).
- 5. J. Schwartz, et. al, "Removing Stripes, Scratches, and Curtaining with Non-Recoverable Compressed Sensing", Microscopy and Microanalysis Meeting, Portland, OR (2019) and SEM-FIB 2018 Workshop.

Published Abstracts

- M. Cao, <u>J. Schwartz</u>, H. Zheng and Y. Jiang, "Atomic Defect Identification with Sparse Sampling and Deep Learning", Smoky Mountain Computational Sciences Conference (2021).
- J. Pietryga, <u>J. Schwartz</u>, et. al. "Rapid Holographic Display of 3D Nanomaterials", <u>Microsc. and Microanal.</u>, 27 (S1) (2021).
- J. Schwartz, et. al. "Recovering Atomic-Scale Chemistry from Fused Multi-Modal Electron Microscopy", Microsc. and Microanal., 27 (S1) (2021).
- J. Schwartz, et. al. "Real-Time 3D Analysis During Electron Tomography using tomviz", <u>Microsc. and Microanal.</u>, 27 (S1) (2021).
- J. Schwartz, et. al. "Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction", <u>Microsc. and Microanal.</u>, 26 (S2) (2020).
- C. Ophus, H. Brown, L. Dacosta, P. Pelz, <u>J. Schwartz</u>, et. al. "Improving the Speed and Accuracy of Large-Scale Scanning Transmission Electron Microscopy Scattering Simulations", <u>Microsc. and Microanal.</u>, 26 (S2) (2020).
- R. Yalisove, S. Sung, <u>J. Schwartz</u>, et. al. "Achieving High-Resolution of Large Specimens Using Aberration Corrected Tomography", <u>Microsc. and Microanal.</u>, 26 (S2) (2020).
- R. Hovden, R. Yalisove, <u>J. Schwartz</u>, et. al. "Filling in the Missing Wedge with Aberration-corrected Electron Tomography", <u>Microsc. and Microanal.</u>, 26 (S2) (2020).
- Y.M. Goh, <u>J. Schwartz</u>, et. al. "Contamination of TEM Holdens Quantified and Mitigated with Open-Hardware High-Vacuum Bakeout", <u>Microsc. and Microanal.</u>, 26 (S2) (2020).
- J. Schwartz, et. al, "Removing Stripes, Scratches, and Curtaining with Non-Recoverable Compressed Sensing", <u>Microsc. and Microanal.</u>, 25 (S2) (2019).
- 11. M. Hanwell, C. Harris, A. Genova, <u>J. Schwartz</u>, et. al, "Tomviz: Open Source Platform Connecting Image Processing Pipelines to GPU Accelerated 3D Visualization", <u>Microsc. and Microanal.</u>, **25** (S2) (2019).
- R. Hovden, <u>J. Schwartz</u>, et. al, "Real-Time Tomography with Interactive 3D Visualization using tomviz", <u>Microsc. and Microanal.</u>, 24 (S1) (2018).